
Unit-I

Introduction to Python

Python is a popular programming language. It was created by Guido van Rossum, and released
in 1991.

It is used for:

 web development (server-side),
 software development,
 mathematics,
 system scripting.

Python is the language of choice for data analysis and machine learning, but it can also adapt

to create games and work with embedded devices

Technically speaking it is an interpreted language that does not have an intermediate

compilation phase like a compiled language, for example C or Java.

Python supports a wide variety of different programming paradigms, including procedural

programming, object oriented programming and functional programming.

Features of Python:

Python is a dynamic, high level, free open source and interpreted programming language. It
supports object-oriented programming as well as procedural oriented programming.
In Python, we don’t need to declare the type of variable because it is a dynamically typed
language.
For example, x = 10
Here, x can be anything such as String, int, etc.

There are many features in Python, some of which are discussed below –

1. Easy to code:
Python is a high-level programming language. Python is very easy to learn the language as
compared to other languages like C, C#, Javascript, Java, etc. It is very easy to code in python
language and anybody can learn python basics in a few hours or days. It is also a developer -
friendly language.

2. Free and Open Source:
Python language is freely available at the official website and you can download it.
Since it is open-source, this means that source code is also available to the public. So you can
download it as, use it as well as share it.

3. Object-Oriented Language:
One of the key features of python is Object-Oriented programming. Python supports object-
oriented language and concepts of classes, objects encapsulation, etc.

4. GUI Programming Support:
Graphical User interfaces can be made using a module such as PyQt5, PyQt4, wxPython, or Tk
in python.
PyQt5 is the most popular option for creating graphical apps with Python.

5. High-Level Language:
Python is a high-level language. When we write programs in python, we do not need to
remember the system architecture, nor do we need to manage the memory.

6. Extensible Language:
Python is a Extensible language. We can write us some Python code into C or C++ language
and also we can compile that code in C/C++ language.

7. Python is Portable language:
Python language is also a portable language. For example, if we have python code for
windows and if we want to run this code on other platforms such as Linux, Unix, and Mac
then we do not need to change it, we can run this code on any platform.

8. Python is Integrated language:
Python is also an Integrated language because we can easily integrated python with other
languages like c, c++, etc.

9. Interpreted Language:
Python is an Interpreted Language because Python code is executed line by line at a time. like
other languages C, C++, Java, etc. there is no need to compile python code this makes it easier
to debug our code. The source code of python is converted into an immediate form
called bytecode.

10. Large Standard Library
Python has a large standard library which provides a rich set of module and functions so you
do not have to write your own code for every single thing. There are many libraries present in
python for such as regular expressions, unit-testing, web browsers, etc.

11. Dynamically Typed Language:
Python is a dynamically-typed language. That means the type (for example- int, double, long,
etc.) for a variable is decided at run time not in advance because of this feature we don’t
need to specify the type of variable.

Data types:

Since everything is an object in Python programming, data types are actually classes and
variables are instance (object) of these classes.

Following are the standard or built-in data type of Python:

 Numeric

 Sequence Type

 Boolean

 Set

 Dictionary

Numeric:

In Python, numeric data type represent the data which has numeric value. Numeric value can
be integer, floating number or even complex numbers. These values are defined as int, float

https://www.geeksforgeeks.org/python-data-types/#numeric
https://www.geeksforgeeks.org/python-data-types/#Sequence
https://www.geeksforgeeks.org/python-data-types/#boolean
https://www.geeksforgeeks.org/python-data-types/#set
https://www.geeksforgeeks.org/python-data-types/#dictionary

and complex class in Python.

 Integers – This value is represented by int class. It contains positive or negative whole
numbers (without fraction or decimal). In Python there is no limit to how long an integer
value can be.

 Float – This value is represented by float class. It is a real number with floating point
representation. It is specified by a decimal point. Optionally, the character e or E followed
by a positive or negative integer may be appended to specify scientific notation.

 Complex Numbers – Complex number is represented by complex class. It is specified
as (real part) + (imaginary part)j. For example – 2+3j

Note – type() function is used to determine the type of data type.

Python program to demonstrate numeric value

a = 5
print("Type of a: ", type(a))

b = 5.0
print("\nType of b: ", type(b))

c = 2 + 4j
print("\nType of c: ", type(c))

Output:

Type of a: <class 'int'>

Type of b: <class 'float'>

Type of c: <class 'complex'>

Sequence Type:

In Python, sequence is the ordered collection of similar or different data types. Sequences
allows to store multiple values in an organized and efficient fashion. There are several
sequence types in Python –

 String

https://www.geeksforgeeks.org/python-data-types/#string

 List

 Tuple

String

In Python, Strings are arrays of bytes representing Unicode characters. A string is a collection
of one or more characters put in a single quote, double-quote or triple quote. In python there
is no character data type, a character is a string of length one. It is represented by str class.

Creating String

Creating a String
with single Quotes
String1 = 'Welcome to the Geeks World'
print("String with the use of Single Quotes: ")
print(String1)

Creating a String
with double Quotes
String1 = "I'm a Geek"
print("\nString with the use of Double Quotes: ")
print(String1)
print(type(String1))

Output:

String with the use of Single Quotes:
Welcome to the Geeks World

String with the use of Double Quotes:
I'm a Geek
<class 'str'>

Accessing elements of String

In Python, individual characters of a String can be accessed by using the method of Indexing.
Indexing allows negative address references to access characters from the back of the String,
e.g. -1 refers to the last character, -2 refers to the second last character and so on.

https://www.geeksforgeeks.org/python-data-types/#list
https://www.geeksforgeeks.org/python-data-types/#tuple
https://www.geeksforgeeks.org/python-strings/

String1 = "GeeksForGeeks"
print("Initial String: ")
print(String1)
Printing First character
print("\nFirst character of String is: ")
print(String1[0])

Printing Last character
print("\nLast character of String is: ")
print(String1[-1])

Output:

Initial String:
GeeksForGeeks

First character of String is:
G

Last character of String is:
S

List

Lists are just like the arrays, declared in other languages which is an ordered collection of
data. It is very flexible as the items in a list do not need to be of the same type.

Creating List
Lists in Python can be created by just placing the sequence inside the square brackets[].

Python program to demonstrate

https://www.geeksforgeeks.org/python-list/

Creation of List
Creating a List
List = []
print("Intial blank List: ")
print(List)

Creating a List with
the use of a String
List = ['GeeksForGeeks']
print("\nList with the use of String: ")
print(List)

Creating a List with
the use of multiple values
List = ["Geeks", "For", "Geeks"]
print("\nList containing multiple values: ")
print(List[0])
print(List[2])

Creating a Multi-Dimensional List
(By Nesting a list inside a List)
List = [['Geeks', 'For'], ['Geeks']]
print("\nMulti-Dimensional List: ")
print(List)

Output:

Intial blank List:
[]

List with the use of String:
['GeeksForGeeks']

List containing multiple values:
Geeks
Geeks

Multi-Dimensional List:
[['Geeks', 'For'], ['Geeks']]

Accessing elements of List

In order to access the list items refer to the index number. Use the index operator [] to
access an item in a list. In Python, negative sequence indexes represent positions from the

end of the array. Instead of having to compute the offset as in List[len(List)-3], it is enough to
just write List[-3]. Negative indexing means beginning from the end, -1 refers to the last item,
-2 refers to the second-last item, etc.

Python program to demonstrate
accessing of element from list
Creating a List with
the use of multiple values
List = ["Geeks", "For", "Geeks"]
accessing a element from the
list using index number
print("Accessing element from the list")
print(List[0])
print(List[2])

accessing a element using
negative indexing
print("Accessing element using negative indexing")
print the last element of list
print(List[-1])
print the third last element of list
print(List[-3])

Output:

Accessing element from the list
Geeks
Geeks
Accessing element using negative indexing
Geeks
Geeks

Tuple

Just like list, tuple is also an ordered collection of Python objects. The only difference
between tuple and list is that tuples are immutable i.e. tuples cannot be modified after it is
created. It is represented by tuple class.

Creating Tuple
In Python, tuples are created by placing a sequence of values separated by ‘comma’ with or
without the use of parentheses for grouping of the data sequence. Tuples can contain any
number of elements and of any datatype (like strings, integers, list, etc.).

https://www.geeksforgeeks.org/python-tuples/
https://www.geeksforgeeks.org/python-tuples/

Note: Tuples can also be created with a single element, but it is a bit tricky. Having one
element in the parentheses is not sufficient, there must be a trailing ‘comma’ to make it a
tuple.

Creating an empty tuple
Tuple1 = ()
print("Initial empty Tuple: ")
print (Tuple1)

Creating a Tuple with
the use of Strings
Tuple1 = ('Geeks', 'For')
print("\nTuple with the use of String: ")
print(Tuple1)

Creating a Tuple with
the use of list
list1 = [1, 2, 4, 5, 6]
print("\nTuple using List: ")
print(tuple(list1))

Creating a Tuple with the
use of built-in function
Tuple1 = tuple('Geeks')
print("\nTuple with the use of function: ")
print(Tuple1)

Creating a Tuple
with nested tuples
Tuple1 = (0, 1, 2, 3)
Tuple2 = ('python', 'geek')
Tuple3 = (Tuple1, Tuple2)
print("\nTuple with nested tuples: ")
print(Tuple3)

Output:

Initial empty Tuple:
()

Tuple with the use of String:
('Geeks', 'For')

Tuple using List:

(1, 2, 4, 5, 6)

Tuple with the use of function:
('G', 'e', 'e', 'k', 's')

Tuple with nested tuples:
((0, 1, 2, 3), ('python', 'geek'))

Accessing elements of Tuple

In order to access the tuple items refer to the index number. Use the index operator [] to
access an item in a tuple. The index must be an integer. Nested tuples are accessed using
nested indexing.

tuple1 = tuple([1, 2, 3, 4, 5])

Accessing element using indexing
print("Frist element of tuple")
print(tuple1[0])

Accessing element from last
negative indexing
print("\nLast element of tuple")
print(tuple1[-1])

print("\nThird last element of tuple")
print(tuple1[-3])

Output:

Frist element of tuple
1

Last element of tuple
5

Third last element of tuple
3

Boolean

Data type with one of the two built-in values, True or False. Boolean objects that are equal to
True are truthy (true), and those equal to False are falsy (false). But non-Boolean objects can
be evaluated in Boolean context as well and determined to be true or false. It is denoted by

the class bool.
Note – True and False with capital ‘T’ and ‘F’ are valid booleans otherwise python will throw
an error.

print(type(True))
print(type(False))

Output:

<class 'bool'>
<class 'bool'>

Set

In Python, Set is an unordered collection of data type that is iterable, mutable and has no
duplicate elements. The order of elements in a set is undefined though it may consist of
various elements.

Creating Sets

Sets can be created by using the built-in set() function with an iterable object or a sequence
by placing the sequence inside curly braces, separated by ‘comma’. Type of elements in a set
need not be the same, various mixed-up data type values can also be passed to the set.

Creating a Set

set1 = set()
print("Intial blank Set: ")
print(set1)

Creating a Set with
the use of a String
set1 = set("GeeksForGeeks")
print("\nSet with the use of String: ")
print(set1)

Creating a Set with
the use of a List
set1 = set(["Geeks", "For", "Geeks"])

https://www.geeksforgeeks.org/python-sets/

print("\nSet with the use of List: ")
print(set1)

Creating a Set with
a mixed type of values
(Having numbers and strings)
set1 = set([1, 2, 'Geeks', 4, 'For', 6, 'Geeks'])
print("\nSet with the use of Mixed Values")
print(set1)

Output:

Intial blank Set:
set()

Set with the use of String:
{'F', 'o', 'G', 's', 'r', 'k', 'e'}

Set with the use of List:
{'Geeks', 'For'}

Set with the use of Mixed Values
{1, 2, 4, 6, 'Geeks', 'For'}

Accessing elements of Sets

Set items cannot be accessed by referring to an index, since sets are unordered the items has
no index. But you can loop through the set items using a for loop, or ask if a specified value is
present in a set, by using the in keyword.

Creating a set
set1 = set(["Geeks", "For", "Geeks"])
print("\nInitial set")
print(set1)

Accessing element using
for loop
print("\nElements of set: ")
for i in set1:
 print(i, end =" ")

Checking the element
using in keyword

print("Geeks" in set1)

Output:

Initial set:
{'Geeks', 'For'}

Elements of set:
Geeks For

True

Dictionary

Dictionary in Python is an unordered collection of data values, used to store data values like a
map, which unlike other Data Types that hold only single value as an element, Dictionary
holds key:value pair. Key-value is provided in the dictionary to make it more optimized. Each
key-value pair in a Dictionary is separated by a colon :, whereas each key is separated by a
‘comma’.

Creating Dictionary

In Python, a Dictionary can be created by placing a sequence of elements within curly {}
braces, separated by ‘comma’. Values in a dictionary can be of any datatype and can be
duplicated, whereas keys can’t be repeated and must be immutable. Dictionary can also be
created by the built-in function dict(). An empty dictionary can be created by just placing it to
curly braces{}.
Note – Dictionary keys are case sensitive, same name but different cases of Key will be
treated distinctly.

Dict = {}
print("Empty Dictionary: ")
print(Dict)

Creating a Dictionary
with Integer Keys
Dict = {1: 'Geeks', 2: 'For', 3: 'Geeks'}
print("\nDictionary with the use of Integer Keys: ")
print(Dict)

Creating a Dictionary
with Mixed keys
Dict = {'Name': 'Geeks', 1: [1, 2, 3, 4]}

https://www.geeksforgeeks.org/python-dictionary/

print("\nDictionary with the use of Mixed Keys: ")
print(Dict)

Creating a Dictionary
with dict() method
Dict = dict({1: 'Geeks', 2: 'For', 3:'Geeks'})
print("\nDictionary with the use of dict(): ")
print(Dict)

Creating a Dictionary
with each item as a Pair
Dict = dict([(1, 'Geeks'), (2, 'For')])
print("\nDictionary with each item as a pair: ")
print(Dict)

Output:

Empty Dictionary:
{}

Dictionary with the use of Integer Keys:
{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with the use of Mixed Keys:
{1: [1, 2, 3, 4], 'Name': 'Geeks'}

Dictionary with the use of dict():
{1: 'Geeks', 2: 'For', 3: 'Geeks'}

Dictionary with each item as a pair:
{1: 'Geeks', 2: 'For'}

Accessing elements of Dictionary

In order to access the items of a dictionary refer to its key name. Key can be used inside
square brackets. There is also a method called get() that will also help in accessing the
element from a dictionary.

Dict = {1: 'Geeks', 'name': 'For', 3: 'Geeks'}
accessing a element using key
print("Accessing a element using key:")
print(Dict['name'])

accessing a element using get()
method
print("Accessing a element using get:")
print(Dict.get(3))

Output:

Accessing a element using key:
For
Accessing a element using get:
Geeks

Input and Output statements:

Taking Input from the user (Input):

Sometimes a developer might want to take input from the user at some point in the program.
To do this Python provides an input() function.

Syntax:
 input('prompt')

where, prompt is a string that is displayed on the string at the time of taking input.

Example 1: Taking input from the user with a message.

Taking input from the user
name = input("Enter your name: ")

 # Output
print("Hello, " + name)

Output:
Enter your name: Gfg

Hello, Gfg

Example 2: By default input() function takes the user’s input in a string. So, to take the input

in the form of int, you need to use int() along with input function.

Taking input from the user as integer
num = int(input("Enter a number: "))
add = num + 1

https://www.geeksforgeeks.org/python-int-function/

Output
print(add)

Output:
Enter a number: 25
26

Displaying Output (Output):

Python provides the print() function to display output to the console.

Syntax:

print(value(s), sep= ‘ ‘, end = ‘\n’, file=file, flush=flush)

Parameters:

value(s) : Any value, and as many as you like. Will be converted to string before printed

sep=’separator’ : (Optional) Specify how to separate the objects, if there is more than
one.Default :’ ‘

end=’end’: (Optional) Specify what to print at the end.Default : ‘\n’

file : (Optional) An object with a write method. Default :sys.stdout

flush : (Optional) A Boolean, specifying if the output is flushed (True) or buffered (False).
Default: False

Returns: It returns output to the screen.

Python program to demonstrate
print() method
print("GFG")

code for disabling the softspace feature
print('G', 'F', 'G', sep ='')

using end argument
print("Python", end = '@')
print("GeeksforGeeks")

Output:
GFG

https://www.geeksforgeeks.org/python-output-using-print-function/

GFG

Python@GeeksforGeeks

Formatting Output

Formatting output in Python can be done in many ways. Let’s discuss them below

 We can use formatted string literals, by starting a string with f or F before opening
quotation marks or triple quotation marks. In this string, we can write Python expressions
between { and } that can refer to a variable or any literal value.

Example:

Declaring a variable
name = "Gfg"

Output
print(f'Hello {name}! How are you?')

Output:
 Hello Gfg! How are you?

 We can also use format() function to format our output to make it look presentable. The

curly braces { } work as placeholders. We can specify the order in which variables occur in
the output.

Example:

a = 20
b = 10

addition
sum = a + b

subtraction
sub = a- b

Output
print('The value of a is {} and b is {}'.format(a,b))

print('{2} is the sum of {0} and {1}'.format(a,b,sum))
print('{sub_value} is the subtraction of {value_a} and {value_b}'.format(value_a = a ,value_b =
b,sub_value = sub))

https://www.geeksforgeeks.org/formatted-string-literals-f-strings-python/
https://www.geeksforgeeks.org/python-format-function/

Output:
The value of a is 20 and b is 10

30 is the sum of 20 and 10

10 is the subtraction of 20 and 10

 We can use ‘%’ operator. % values are replaced with zero or more value of elements.

Example:

num = int(input("Enter a value: "))

add = num + 5

Output
print("The sum is %d" %add)

Output:
Enter a value: 50

The sum is 55

Control Statements:

As you may know, loops in Python are used to iterate repeatedly over a block of code. But at
times, you might want to shift the control once a particular condition is satisfied. This is where
control statements in Python come into the picture.

Control statements in python are used to control the flow of execution of the program based
on the specified conditions. Python supports 3 control statements such as,

 Break

 Continue

 Pass

Break:

The break statement in Python is used to terminate a loop. This means whenever the
interpreter encounters the break keyword, it simply exits out of the loop. Once it breaks out of
the loop, the control shifts to the immediate next statement.

Also, if the break statement is used inside a nested loop, it terminates the innermost loop and
the control shifts to the next statement in the outer loop.

https://www.faceprep.in/loops-in-python/

Flowchart of Break Statement in Python

Example

#program to check if letter 'A' is present in the input

a = input ("Enter a word")
for i in a:
 if (i == 'A'):
 print ("A is found")
 break
 else:
 print ("A not found")

Input: FACE Prep

Output:
 A not found
 A is found

Continue:

Whenever the interpreter encounters a continue statement in Python, it will skip the execution
of the rest of the statements in that loop and proceed with the next iteration . This means it
returns the control to the beginning of the loop. Unlike the break statement, continue
statement does not terminate or exit out of the loop. Rather, it continues with the next
iteration. Here is the flow of execution when continue statement is used.

Flowchart of Continue Statement in Python

Example

#program to check if letter 'A' is present in the input
a = input ("Enter a word")
for i in a:
 if (i != 'A'):
 continue
 else:
 print ("A is found")

Input: FACE Prep
Output:

 A is found

Pass:

Assume we have a loop that is not implemented yet, but needs to be implemented in the
future. In this case, if you leave the loop empty, the interpreter will throw an error. To avoid
this, you can use the pass statement to construct a block that does nothing i.e contains no
statements.

Example

for i in 'FACE':
 if (i == 'A'):
 pass
 print (i)

Output:
 F
 A
 C
 E

Operators:

Operators are special symbols in Python that carry out arithmetic or logical computation. The
value that the operator operates on is called the operand.

Python divides the operators in the following groups:

 Arithmetic operators
 Comparison operators
 Logical operators
 Bitwise operators
 Assignment operators
 Identity operators
 Membership operators

Arithmetic operators:

Arithmetic operators are used with numeric values to perform common mathematical
operations.

Operator Meaning Example

+
Add two operands or
unary plus

x + y+ 2

-
Subtract right operand
from the left or unary
minus

x - y- 2

* Multiply two operands x * y

/
Divide left operand by
the right one (always
results into float)

x / y

%
Modulus - remainder of
the division of left
operand by the right

x % y (remainder of x/y)

//

Floor division - division
that results into whole
number adjusted to the
left in the number line

x // y

**
Exponent - left operand
raised to the power of
right

x**y (x to the power y)

Comparison operators:

Comparison operators are used to compare values. It returns either True or False according to the

condition.

Operator Meaning Example

> Greater than - True if left

operand is greater than
x > y

the right

<

Less than - True if left

operand is less than the

right

x < y

==
Equal to - True if both

operands are equal
x == y

!=
Not equal to - True if

operands are not equal
x != y

>=

Greater than or equal to -

True if left operand is

greater than or equal to

the right

x >= y

<=

Less than or equal to -

True if left operand is less

than or equal to the right

x <= y

Logical operators:

Operator Meaning Example

And
True if both the operands are
true

x and y

Or
True if either of the operands is
true

x or y

Not
True if operand is false
(complements the operand)

not x

Bitwise operators:

Bitwise operators act on operands as if they were strings of binary digits. They operate bit by bit,

hence the name.

For example, 2 is 10 in binary and 7 is 111.

In the table below: Let x = 10 (0000 1010 in binary) and y = 4 (0000 0100 in binary)

Operator Meaning Example

& Bitwise AND x & y = 0 (0000 0000)

| Bitwise OR x | y = 14 (0000 1110)

~ Bitwise NOT ~x = -11 (1111 0101)

^ Bitwise XOR x ^ y = 14 (0000 1110)

>> Bitwise right shift x >> 2 = 2 (0000 0010)

<< Bitwise left shift x << 2 = 40 (0010 1000)

Assignment operators

Assignment operators are used in Python to assign values to variables.

a = 5 is a simple assignment operator that assigns the value 5 on the right to the variable a on the

left.

There are various compound operators in Python like a += 5 that adds to the variable and later

assigns the same. It is equivalent to a = a + 5.

Operator Example Equivalent to

= x = 5 x = 5

+= x += 5 x = x + 5

-= x -= 5 x = x – 5

*= x *= 5 x = x * 5

Identity operators:

is and is not are the identity operators in Python. They are used to check if two values (or

variables) are located on the same part of the memory. Two variables that are equal does not

imply that they are identical.

Operator Meaning Example

Is

True if the operands are

identical (refer to the

same object)

x is True

is not

True if the operands are

not identical (do not refer

to the same object)

x is not True

Membership operators:

in and not in are the membership operators in Python. They are used to test whether a value or

variable is found in a sequence (string, list, tuple, set and dictionary).

In a dictionary we can only test for presence of key, not the value.

https://www.programiz.com/python-programming/string
https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/set
https://www.programiz.com/python-programming/dictionary

Operator Meaning Example

In
True if value/variable is found in

the sequence
5 in x

not in
True if value/variable is not

found in the sequence
5 not in x

Basic String operations:

String class i.e str provides many useful methods to manipulate string. Specifically, we will
discuss methods which does the following.

1. Search for substring inside string.
2. Test strings.
3. Format strings.
4. Convert strings.

Recall from the earlier chapter that methods are functions which belongs to an object.
However, unlike function, a method are always called on a object using the following notation.

object.method_name(arg1, arg2, arg3,, argN)

1. Searching and Replacing Strings:

The str class has the following methods which allow you to search for a substring inside a string.

Method Description

endswith(sub) Returns True if string ends with substring sub.
Otherwise False.

startswith(sub) Returns True if string starts with substring sub.
Otherwise False.

Method Description

find(sub) Returns the lowest index of the string where
substring sub is found. If substring sub is not
found -1 is returned.

rfind(sub) Returns the highest index of the string where
substring sub is found. If substring sub is not
found -1 is returned.

count(sub) It returns the number of occurrences of
substring sub found in the string. If no occurrences
found 0 is returned.

replace(old, new) It returns a new string after replacing old substring
with new. Notice that it does not change the
object on which it is called.

3. Formatting Methods:

The following table list some formatting methods of the str class.

Method Description

center(width) Returns a new copy of the string after centering it

in a field of length width.

ljust(width) Returns a new copy of the string justified to left in

field of length width.

rjust(width) Returns a new copy of the string justified to right

in field of length width.

4. Converting Strings:

The following methods are commonly used to return a modified version of the string.

Method Description

lower() Returns a new copy of the string after

converting all of it's characters to lowercase.

upper() Returns a new copy of the string after

converting all of it's characters to uppercase.

capitalize() Returns a new copy of the string after

capitalizing only the first letter in the string.

title() Returns a new copy of the string after

capitalizing the first letter in each word.

swapcase() Returns a new copy after converting lowercase

letters to uppercase and vice-versa.

strip() Returns a new copy of the string after removing

all the leading and trailing whitespace

characters.

strip(chars) Returns a new copy of the string after

removing chars from the beginning and end of

the string.

String Testing methods:

The following methods of the str class tests various types of characters inside the string.

Method Description

str.isalnum() returns True if all the characters in the string is

alphanumeric (a string which contains either

number or alphabets or both).

Otherwise False.

str.isalpha() returns True if all the characters in the string

are alphabets. Otherwise False.

str.isdigit() returns True if all the characters in the string

are digits. Otherwise False.

str.islower() returns True if all the characters in the string

are in lowercase. Otherwise False.

str.isupper() returns True if all the characters in the string

are in uppercase. Otherwise False.

str.isspace() returns True if all the characters in the string

are whitespace characters. Otherwise False.

List:

Python has a set of built-in methods that you can use on lists/arrays.

Method Description

append() Adds an element at the end of the list

https://www.w3schools.com/python/ref_list_append.asp

clear() Removes all the elements from the list

copy() Returns a copy of the list

count() Returns the number of elements with the specified

value

extend() Add the elements of a list (or any iterable), to the end

of the current list

index() Returns the index of the first element with the

specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the first item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

https://www.w3schools.com/python/ref_list_clear.asp
https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

Tuple:

Python has two built-in methods that you can use on tuples.

Method Description

count() Returns the number of times a specified value occurs in

a tuple

index() Searches the tuple for a specified value and returns the

position of where it was found

Dictionary:

Python has a set of built-in methods that you can use on dictionaries.

Method Description

clear() Removes all the elements from the dictionary

copy() Returns a copy of the dictionary

fromkeys() Returns a dictionary with the specified keys and

value

https://www.w3schools.com/python/ref_tuple_count.asp
https://www.w3schools.com/python/ref_tuple_index.asp
https://www.w3schools.com/python/ref_dictionary_clear.asp
https://www.w3schools.com/python/ref_dictionary_copy.asp
https://www.w3schools.com/python/ref_dictionary_fromkeys.asp

get() Returns the value of the specified key

items() Returns a list containing a tuple for each key

value pair

keys() Returns a list containing the dictionary's keys

pop() Removes the element with the specified key

popitem() Removes the last inserted key-value pair

setdefault() Returns the value of the specified key. If the key

does not exist: insert the key, with the specified

value

update() Updates the dictionary with the specified key-

value pairs

values() Returns a list of all the values in the dictionary

https://www.w3schools.com/python/ref_dictionary_get.asp
https://www.w3schools.com/python/ref_dictionary_items.asp
https://www.w3schools.com/python/ref_dictionary_keys.asp
https://www.w3schools.com/python/ref_dictionary_pop.asp
https://www.w3schools.com/python/ref_dictionary_popitem.asp
https://www.w3schools.com/python/ref_dictionary_setdefault.asp
https://www.w3schools.com/python/ref_dictionary_update.asp
https://www.w3schools.com/python/ref_dictionary_values.asp

	Sequence Type:
	String
	Accessing elements of String

	List
	Accessing elements of List

	Tuple
	Accessing elements of Tuple

	Boolean
	Set
	Creating Sets
	Accessing elements of Sets

	Dictionary
	Creating Dictionary
	Accessing elements of Dictionary

	Input and Output statements:
	Taking Input from the user (Input):
	Displaying Output (Output):
	Formatting Output

	Control Statements:
	Break:
	Flowchart of Break Statement in Python
	Example

	Continue:
	Flowchart of Continue Statement in Python
	Example

	Pass:
	Comparison operators:
	Logical operators:
	Bitwise operators:
	Assignment operators
	Identity operators:
	Membership operators:

	1. Searching and Replacing Strings:
	3. Formatting Methods:
	4. Converting Strings:
	String Testing methods:

